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Caption

Negative of imagery from the DMSP F8 satellite OLS sensor for Rev
2862 on 8 Jan 88, The numbered points identify 300km field-line
"footprints" of the DMSP satellite at 30-second intervals, The dot
labeled "AIO" indicates the location of the AIO aircraft at 18:39 GMT,
and the arrow points to the 300km ionospheric penetration point (IPP)
of the AIO-AFSAT radio link.

Imagery from the AIO all-sky photometer taken at 18:37:12, 18:39:30,
and 18:41:30 GMT on 8 Jan 88. The upper images are at a wavelength
of 6300 A, and the lower images are at 4278 A, The locations of the
DMSP footprints and the AIO-AFSAT IPP shown in Figure 1 are plot-
ted on the 6300 A image taken at 18:39:30 GMT. The coordinate-grid
overlay is geographic latitude and longitude.

Total ion density data from the DMSP Scintillation Meter (SM)
instrument from DMSP Rev 2862 on 8 Jan 88, The times labeled 1-7
correspond to the locations indicated in Figures 1 and 2 as DMSP
footprint iocations. The time marked with a )| indicates the time at
which the DMSP footprint was at the same apex latitude (Ap) at the
same time as the AIO-AFSAT IPP,

The density data from Figure 3 detrended by removing the output
from a 6-pole, low-pass Butterworth filter with a cutoff frequency of
0.0469 Hz.

Signal intensity data from the AIO-AFSAT VHF radio link from 8 Jan
88. The data have been detrended using the same procedure as that
used in detrending the density data in Figure 4 except with a 0.01 Hz
cutoff frequency.

Signal phase data from the AIO-AFSAT VHF radio link from 8 Jan
88, The data have been detrended as described in Figure 5.
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Experiment geometry for the 8 Jan 88 pass. The squares indicate the
location of the 300km field-line footprint (FLP) of the DMSP satellite
at 3-second intervals, and the circles indicate the location of the 300km
ionospheric penetration point (IPP) of the AIO-AFSAT link at one-
minute intervals, The DMSP FLP and AIO-AFSAT IPP are at the
same latitude at the same time at 18:38:49, The coordinates of this
plot are modified apex latitude and apex longitude.

Total ion density from the DMSP SM instrument for the time interval
defined in Figure 7. The tic marks along the abscissa correspond to
the 3-second locations indicated in Figure 7.

Data from Figure 8 detrended as described in Figure 4.

Comparison of S4 calculated from the AIO-AFSAT intensity record
shown in Figure 5 (solid line) to S4 calculated from the SSIES CiL
estimates for two irregularity models (17:2 wings - squares; 20:1 rods -
diamonds) and from the WBMOD model! (crosses). The two AIO-
AFSAT points labeled "retune" included retune-discontinuities, and
the point labeled "focus" contained a strong focus, The S4 values for
these three points are unreliable.

Comparison of o¢ calculated from the AIO-AFSAT phase record
shown in Figure 6 (solid line) to o calculated from the SSIES CL
estimates for two irregularity models (17:2 wings - squares; 20:1 rods -
diamonds) and from the WBMOD model (crosses),

Power density spectrum (PDS) of phase, detrended by end-matching
and removing the residual mean, for a 4096-point data sample (204.8
seconds) centered at 67160 seconds. The dotted line is a linear fit to
log(PDS) and log(f) over the range 0.015 Hz to 0.092 Hz, and the
dashed line is a linear fit over the range 0.1 to 1.0 Hz.

AIO-AFSAT phase record detrended with a 0,05 Hz cutoff frequency.

AlO-AFSAT phase record detrended with a 0,075 Hz cutoff
frequency.

Comparison of o4 calculated from the AIO-AFSAT phase record
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Power density spectra from (a) SM density data centered at 67120 (left
ordinate scale) and (b) the AIO-AFSAT phase data (0.01 Hz detrend)
centered at 66960 (right ordinate scale). The SM PDS has been
shifted in log-frequency by -1,76 to compensate for the different effec-
tive scan velocities of the SM and AIO-AFSAT data sets, The short
vertical bars indicate a potentially-common feature in the two spectra
(see text). The horizontal solid bar indicates the value for T derivec
from the AIO-AFSAT phase spectrum (0.1 to 1.0 Hz fit), a..c the
horizontal dotted line indicates a value for T derived from the SM
density data using a 265 m/s effective scan velocity.

Power density spectra from (a) SM density data centered at 67125 (left
ordinate scale) and (b) the AIO-AFSAT phase data (0.01 Hz detrend)
centered at 67060 (right ordinate scale). The SM PDS has been
shifted in log-frequency by -1.57 to compensate for the different effec-
tive scan velocities of the SM and AIO-AFSAT data sets, The short
vertical bars indicate a potentially common feature in the two spectra
(see text), The horizontal solid bar indicates the value for T derived
from the AIO-AFSAT phase spectrum (0.1 to 1.0 Hz fit), and the
horizontal dotted line indicates a value for T derived from the SM
density data using a 265 m/s ¢ffective scan velocity.

Power density spectra from (a) SM density data centered at 67130 (left
ordinate scale) and (b) the AIO-AFSAT phase data (0,01 Hz detrend)
centered at 67160 (right ordinate scale), The SM PDS has been
shifted in log-frequency by -1.34 to compensate for the different effec-
tive scan velocities of the SM and AIO-AFSAT data sets, The short
vertical bars indicate a potentially common feature in the two spectra
(see text). The horizontal solid bar indicates the value for T derived
from the AIO-AFSAT phase spectrum (0.1 to 1.0 Hz fit), and the
horizontal dotted line indicates a value for T derived from the SM
density data using a 265 m/s effective scan velocity.

Power density spectra from (a) SM density data centered at 67135 (left
ordinate scale) and (b) the AIO-AFSAT phase data (0.01 Hz detrend)
centered at 67260 (right ordinate scale), The SM PDS has been
shifted in log-frequency by -1.45 to compensate for the different effec-
tive scan velocities of the SM and AIO-AFSAT data sets. The short
vertical bars indicate a potentially common feature in the two spectra
(see text). The horizontal solid bar indicates the value for T derived
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horizontal dotted line indicates a value for T derived from the SM
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centered at 67360 (right ordinate scale). The SM PDS has been
shifted in log-frequency by -1.35 to compensate for the different effec-
tive scan velocities of the SM and AIO-AFSAT data sets, The short
vertical bars indicate a potentially common feature in the two spectra
(see text). The horizontal solid bar indicates the value for T derived
from the AIO-AFSAT phase spectrum (0.1 to 1.0 Hz fit), and the
horizontal dotted line indicates a value for T derived from the SM
density data using a 265 m/s effective scan velocity,

Average phase and in-situ power density spectra constructed from the
spectra in Figures 18-20. The vertical lines indicate the location of
features described in the text. The in-situ spectrum has been shifted to
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effective scan velocity in the phase data of 265 m/s.

Total ion density measured by the Scintillation Meter (SM) sensor on
DMSP F8 near Kwajalein Atoll on 24 August 1988, The y-axis is jon
density ranging from 0.0 to 2,0x10%; and the x-axis labels are GMT for
Greenwich Mean Time (HH:MM:SS), APXLAT for (modified) apex
latitude, and APXI.ON for apex longitude.

Total ion density measured by the SM sensor on DMSP F9 near
Kwajalein Atoll on 24 August 1988, The axis ranges and labels are as
in Figure 1a,

Total ion density measured by the SM sensor on DMSP F8 near
Kwajalein Atoll on 31 August 1988. The axis ranges and labels are as
in Figure 1a.

Total ion density measured by the SM sensor on DMSP F9 near
Kwajalein Atoll on 31 August 1988. The axis ranges and labels are as
in Figure 1a.

Total ion density measured by the SM sensor on DMSP F8 near
Kwajalein Atoll on 13 August 1988, The axis ranges and labels are as
in Figure 1a.

Total ion density measured by the SM sensor on DMSP F9 near
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in Figure 1a.

Total jon density measured by the SM sensor on DMSP F9 near
Kwajalein Atoll on 28 August 1988. The axis ranges and labels are as
in Figure 1a.
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PREFACE

This report describes the work completed during the third year of a multi-year inves-
tigation into the feasibility of using in-situ observations of the ionosphere from the DMSP
SSIES sensors to calculate parameters that characterize ionospheric scintillation effects,
Work during this year focused on detailed analysis of data collected during the first day of
the SSIES/AIO/AFSAT/EISCAT coordinated data-collection campaign described in the
annual report from the second year of the projecti!] and on analysis of SSIES data collected
from both the DMSP F8 and F9 satellites in conjunction with a propagation experiment
(PEAK: Propagation Effects Assessment - Kwajaiein) conducted under the auspices of the
Defense Nuclear Agency (DNA), The results of both analyses are presented in this report.

This work is part of a larger effort with an overall objective of providing the USAF
Air Weather Service with the capability of observing ionospheric scintillations, and the
plasma density irregularities that cause the scintillations, in near real-time and updating
models of ionospheric scintillation with these observations.
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1. Introduction

Many modern military systems used for communications, command and control,
navigation, and surveillance depend on reliable and relatively noise-free transmission of
radiowave signals through the earth's ionosphere. Small-scele irregularities in the
icnospheric density can cause severe distortion, known as radiowave scintillation, of both
the amplitude and phase of these signals. A basic tool used in estimating these effects on
systems is a computer program, WBMOD, based on a single-scatter phase-screen
propagation model and a number of empirical models of the global morphology of
ionospheric density irregularitiesi’2, An inherent weakness of WBMOD is that the
irregularity models provide median estimates for parameters with large dynamic ranges,
which can lead to large under- and over-estimation of the effects of the ionospheric
irregularities on a system.

One solution to this problem, at least for near real-time estimates, is to update the
WBMOD irregularity models with observations of the various parameters modeled. One
proposed source for these observations is from the in-situ plasma density monitor to be
flown on the Defense Meteorology Satellite Program (DMSP) satellites, Previous studiesl3!
using in-situ measurements from the DE-2 satellite have found that there is potential for
using the data in this fashion. This study is designed to assess the applicability of this data
set to real-time updates of the WBMOD models. There are two primary objectives:

(1)  Develop and refine techniques for generating estimates of parameters that
characterize ionospheric scintillation from in-situ observations of the ionospheric plasma
from the DMSP SSIES sensors.

(2)  Determine if the parameters calculated from the SSIES data can be used to
compute the scintillation effects on a transionospheric radiowave signal.

This report describes the results obtained during the third year of the study. The
focus during this year was on (1) continuing the analysis of SSIES data from the DMSP F8
satellite for two intervals in January 1988 during which the AFGL Airborne Ionospheric
Observatory (AIO), an AFGL VHF-beacon scintillation monitor, and the EISCAT
incoherent-scatter radar were making measurements in the vicinity of Tromso, Norway, and
(2) analyzing SSIES data from the DMSP F8 and F9 satellites collected in the equatorial
region near Kwajalein Island in conjunction with a Defense Nuclear Agency (DNA)
propagation experiment.




2. Background

The propagation model used in the WBMOD program (based on weak-scatter
phase-screen theoryll.2l) characterizes the ionospheric electron density irregularities that
cause scintillation via eight independent parametersi4l:

(1) a: The irregularity axial ratio along the direction of the ambient geomagnetic field.

(2) b: The irregularity axial ratio perpendicular to the direction of the ambient
geomagnetic field,

(3) &: The angle between sheet-like irregularity structures and geomagnetic L shells,
(4) hp: The height of the equivalent phase screen above the earth's surface.

(5) vq¢ The in-situ irregularity drift velocity.

(6) ot The outer scale of the irregularity spectrum.

(7) q: The slope of a power-law distribution that describes the one-dimensional power-
density spectrum (PDS) of the irregularities.

(8) C,L: The height-integrated strength parameter.

The first three parameters (a, b, and 6) and the direction of the ambient geomagnetic field
specify the propagation geometry, while the last three (o, q, and C,L) specify the spectral
characteristics of the irregularities.

It may be possible to obtain estimates for the values of three of these parameters
from the DMSP SSIES sensors: v4 (from the SSIES Ion Drift Meter (DM)), and q and C,L
(from the SSIES Ion Scintillation Meter (SM)). In this study, we will focus on the estimation
of C,L from this data set and consider q and v4 only in terms of the effects of uncertainties
in these parameters on the estimates of C,L. Of the eight parameters, C,L varies the most
as a function of location and time, and has the most profound effect on the accuracy of
estimates of scintillation levels made by the WBMOD model.

In the phase-screen propagation theory used in WBMODW, the C,L parameter is
actually the product of two parameters: Cy, the three-dimensional spectral "strength" of the
electron density irregularities at a scale size of 1 km" (related to the structure constant used
in classical turbulence theory); and L, the thickness of the irregularity layer. The models in
WBMOD were obtained from analysis of phase scintillation data from the WIDEBAND
and HiLat satellites, which will provide estimates of the height-integrated value of C,L
rather than independent measures of C, and L. Because of this, the model was developed
for C,L rather than for C, and L separately.

* The cited reference develops the theory in terms of an earlier definition of the strength
parameter, C,, which is defined at a scale size of 2r meters. It is related to C, according to
the equation C, = (2r/1000)3+2 C,,




The calculation of an estimate of the C,L parameter from topside in-situ ion density
observations requires two operations. First, an estimate of C, at the satellite altitude is
made from a finite-length time series of density measurements. Second, the estimate of C,
is converted to an estimate of C,L in some fashion which will account for both the thickness
of the irregularity layer and the variation of C,, or <AN,2>, within the layer,

The data set from which the estimates of these parameters are to be obtained will be
collected by three instruments in the DMSP SSIES (Special Sensor for Ions, Electrons, and
Scintillation) sensor package. This data set will contain the following in-situ observations:

(1) High time-resolution (24 samples/sec) measurements of the ion density and
measurements of the ion density irregularity PDS at high fluctuation frequencies from the
Ion Scintillation Meter (SM)(S],

(2) Measurements of the horizontal and vertical cross-track ion drift velocities from
the Ion Drift Meter (DM)B3),

(3) Measurements of the ion and electron temperatures, the densities of O+ and
the dominan: light ion (H* or He *), and the horizontal ram ion drift velocity from the ion
Retuiding Potential Analyzer (RPA)sl,

The basic data of this set are the high time-resolution density data from the SM which will
be used to generate estimates of the irregularity PDS. The drift-velocity measurements
from the DM and RPA will be used in calculating an estimate of C, from parameters
obtained from the PDS, and the other measurements from the RPA will be used in calcu-
lating C,L from C,.

In the first year of this project, techniques for calculating estimates of C,L from the
SSIES data set were developed, and parametric studies were conducted to determine the
uncertainties in the final C,L estimates due to uncertainties in the parameters and proce-
dures used to calculate the estimates. Since the first SSIES sensor package was not flown
until mid-1987, these studies were conducted using simulated SM density data sets and
phase scintillation data from the Wideband satellite, The results of these studies were
reported in Scieniific Report 1 for this projectl”! (herein referred to as Report #1) and will
be summarized in this report where pertinent.

The second phase of the project, which focuses on how well these techniques work
using data from the DMSP F8 and F9 spacecraft, was begun during the second year of the
project. A coordinated, multi-sensor observation campaign was conducted during January
1988 in the vicinity of Tromso, Norway, in order to collect data for this study. The GL
Airborne Ionospheric Observatory (AIQ) aircraft flew repeated north-south legs along the
magnetic meridian at times when the DMSP F8 satellite was passing overhead. Data
collected on the AIO included intensity and phase scintillation observations on a VHF link
from an AFSAT satellite, auroral images from an all-sky photometer, and ionograms from a
digisonde. lonospheric soundings by the EISCAT incoherent-scatter radar located in
Norway also were made aperiodically throughout the observation period. Data were
collected for DMSP passes on 8, 9, 15, 16, 17, and 18 January 1988, The procedures used to




process these data and preliminary results from the analysis were reported in Scientific
Report #2 for this project(®] (herein referred to as Report #2) and will be summarized in
this report where pertinent.

During the third year, a complete analysis was made of the data from the 8 January
1988 data set, and SSIES data collected from both DMSP F8 and F9 during a multi-sensor
campaign conducted by the Defense Nuclear Agency (DNA) near Kwajalein Island were
analyzed to determine the usefulness of these data for scintillation characterization in the
equatorial ionosphere. The results of these studies are presented in this report.

A note on coordinate systems: The geomagnetic latitude, longitude, and local time
coordinate system used throughout this report is modified apex coordinatesl®l, a coordinate
system derived from apex coordinates proposed by VanZandt et. al.119], 'This system, which
is used in the WBMOD model, was chosen because it is very similar to both invariant and
corrected geomagnetic coordinates at high latitudes, and modified apex latitude is very
similar to dip latitude in the equatorial region, becoming identical to dip latitude at the dip
equator.




3. Analysis of SSIES/AIO/EISCAT Campaign Data

In Report #2, we described in detail the coordinated data-collection campaign that
was conducted in January 1988 in the vicinity of the EISCAT radar facility located in north-
ern Norway(tl, During the past year, we have received the scintillation observations from
the AIO-AFSAT VHF link, which allowed us to compare the level of scintillation predicted
by analysis of the DMSP F8 SSIES data to the observed scintillation on this link. We have
received the data for only a single day (8 Jan 88), but we believe that this was enough to
demonstrate that the DMSP SSIES data potentially can be used to monitor the level of scin-
tillation that would be observed on a transionospheric propagation path,

3.1 Data Description

Figures 1 and 2 place the observations used in this analysis in the context of condi-
tions within the auroral zone at the time of the DMSP pass. Figure 1 is the imagery (in
negative) taken by the OLS system on the DMSP F8 satellite as it passed over northern
Norway., The overlay grid is geographic latitude and longitude, the dots numbered 1
through 7 are points where the DMSP location has been mapped down to 300km altitude
along a magnetic field line at 30-second intervals starting at 18:37:30 GMT at Point 1, and
the circled dot labeled "AIO" indicates the location of the AIQO aircraft at 18:39 GMT, with
the small arrow indicating the 300km penetration point of the propagation path to the
AFSAT satellite. The impges in Figure 2 are from the all-sky photometer on the AIO
aircraft. The center 6330 A image, taken at 18:39:30, is labeled with the DMSP locations as
in Figure 1, and the AIO-AFSAT 300km penetration point at 18:39:30 is marked with a
large dot.

Figure 3 is a plot of the total jon density data from the SSIES SM sensor for a five-
minute period centered on the location identified as Point #4 in Figure 1. The times corre-
sponding to Points #1-7 in Figures 1 and 2 are labeled on Figure 3, as is the time at which
the 300km-point of the field line (FLP) passing through the DMSP location was at the same
magnetic latitude as the 300km ionospheric penetration point (IPP) of the AIO-AFSAT
radio link (labeled X\{). Figure 4 shows the same data over the same time interval,
detrended using a 6-pole Butterworth low-pass filter with a 3dB cutoff at a frequency of
0.047 Hz (21-1/3 seconds),

The amplitude and phase data from the AIO-AFSAT VHF radio link (provided by
R. Livingston, SRII) are shown in Figures 5 and 6, respectively, These data have both been
detrended using the same low-pass filter used to detrend the density data, except with a 3dB
cutoft frequency of C.01Hz (100 seconds). The phase data were preprocessed at SRII to
remove artifacts introduced at points where the ground receiver has been retuned to follow
frequency jumps in the AFSAT signal, which occur at 168-second intervals. The effects of
these retunes can be seen in the intensity record ut 67212 nnd 67380, Small residual phase
discontinuities (on the order of 1-2 radians) were found in the preprocessed data, which
were removed prior to detrending by shifting the 168-second rata segments up or down to




Figure |. Negative of imagery from the DMSP F8 satellite ()1.S senaor for Rev 2862 on R Ian 88, The
numbered points identify 300km field-line "footprints” of the DMSP satellite nt 3-aecand intervala,
The dot labeled "A1O” indicates the location of the A0 aircraft at 15:39 GM'T, and the arrow points
to the 300km {onospheric penetration point (IPP) of the AIO-AFSAT radio link.
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Figure 3, Total ion density data from the DMSP Scintillation Meter (SM) instrument from DMSP Rev 2862
on 8 Jan 88. The times labeled 1.7 cotreapond to the locations indicated in Figures 1 and 2 as DMSP
footprint locations. The time marked with a A indicates the time at which the DMSP footprint was at
the sanie apex latitude (N () 4t the same time as the AIO-AFSAT IPP.

u\oJ
+5.0

|

0.0 ~

Deirsnded Ion Density (iom/cc)
I

-

T o W e man

=% ma_—

. e

— ]
1
»
~— ) =
|
o0 | 1 l | | T
UT(REC) 44990 67030 47110 47170 &«7830 47390 UT(BKC)
OLAY 78. A0 75. 9% 73. 17 70. 1% 67. 09 6. 74 QLAT
QLON 40. 90 30.18 a%. &2 17. 20 1. 1} 9. 9% OLON
ALT e, 7 [ ] A1) 899, 40 (1L T %Y. 40 0%, 30 ALY
APXLAT 74, 02 78 34 70. 108 7. 67 &4, 90 61. 90 AFKLAT
APXLON 120. 9t 119. 09 110 8¢ 102, 43 7. 06 93. 14 APRLON
APXLY BR. &R0 21. %00 23,317 20. 933 20. 402 B0. 189 APXLT

Figure 4. ‘The density data from Figure 3 detrended by removing the output from a 6-pole, low-pass
Butterworth filter with a cutoff frequency of 0.0469 He.

d




PO R N N NN NN NN N N M

Detrended VHF Intensity

«1.0
! T T 1 A T | T

UT(B8KC) 46840 4640 47000 47200 473R0 67440 UT(EC)
QLAT 7R, 3 72. 0% 72 18 71.93 71. 4% 71, 46 QLAY
ALON 10. 07 10 22 19, 37 12, 99 10. 40 10, 84 QLON
AT 200. 00 300. 00 300, 00 900, 00 300, 00 200. 00 ALT
APXLAT 49 99 &9, 74 49, 83 oy, 20 9. 02 A, B0 APHLAT
APXLON 104. 90 106. 73 104. &0 106, 44 106. 29 104. 146 APXLON
APRLT 20.9%78 21. 000 &1, 0R9 1. 047 21, 070 21,099 APXLY

Figure 5. Signal intensity data from the AIO-AFSAT VHF radlo link from 8 Jan 88, The data have been
detrended using the same procedure ns that used in detrending the density duta in Figure 4 except with
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remove the discontinuities at the retune boundaries. The data interval shown in these plots
covers an entire southbound leg flown by the AIO aircraft and is bounded by a 180° north-
ward-to-southward turn from 18:30 to 18:33 GMT and a 40° turn to the southwest from
18:46 to 18:48 GMT.

The first order of business in attempting to compare the DMSP density data and the
AIO-AFSAT propagation data is to determine the time period for comparison, Figure 7
shows the location of the DMSP 300km FLP at 3-second intervals during the time period
18:38:34 to 18:39:04 (squares) and the location of the AIO-AFSAT 300km IPP at one-
minute intervals during the time period 18:34:00 to 18:44:00 (circles), plotted in apex coor-
dinates, The DMSP 300km FLP and the AIO-AFSAT 300km IPP cross the same magnetic
latitude (67.429) at 18:39:49 (67129 seconds). Figures 8 and 9 are expanded plots of the
SSIES SM density data and the detrended density data from Figures 3 and 4, covering the
time period corresponding to the DMSP FLP location plot in Figure 7. The plots of the
AlO-AFSAT intensity and phase data in Figures 5 and 6 cover the time period correspond-
ing to the IPP location plot in Figure 7. The following analysis will focus on these data
intervals.

3.2 Data Processing

3.2.1 SSIES SM Data

The processing procedures used to generate estimates of scintillation parameters
from the SSIES SM telemetry data are essentially as described in Report #2, The only
changes are in the sample size used to generate the in-situ irvegularity spectra and in the
velocities used to calculate the phase-scintillation parameters. The sample size was
decrensed from 512 points to 256 points to increase the temporal/spatial resolution of the
scintillation estimates. 'This had no effect on the remainder of the processing, as the range
over which the log-log least-squares fit was made to estimate Ty and q is above the frequen-
cles affected by decreasing the sample size.

There ure three sources of motion in the experiment that must be accounted for: (1)
the DMSP satellite orbital motion, (2) the moticn of the 300km IPP (due to motjon of the
AlO aircraft and the AFSAT satellite orbital motion), and (3) the in-sitt. motion of the
irregularities (both at the DMSP observation point and at the AIO-AFSAT [PP). Values
for the first two ure relatively easy to obtain, but the third is not readily available and is the
source of most of the uncertainty in generating the phase scintillation parameters, The
DMSP satellite velocity was derived directly from the satellite ephemeris, and the velocity
of the AIO-AFSAT 300km IPP was calculated from the time rate-of-change of the locations
of the [PP. The uverage velocity for the IPP used in the calculations was 230 m/s south and
[40) m/s west in a coordinate system aligned with the geomagnetic tield.




A1O / DMSP Locations - 8 Jan 1988
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Figure 7. Expsriment geometry for the 8 Jan 88 pass, The squares indicate the location of the 300km field-line
footprint (FLP) of the DMSP satellite at 3-second intervals, and the circles indicate the location of the
300km ionospheric penetration point (IPP) of the AIO-AFSAT link at one-minute intervals. The

. DMSP FLP and AIO-AFSAT IPP are at the same latitude at the same time at 18:38:49. The
coordinates of this plot are modified apex latitude and apex longitude,




4
%10
. IR RO N NN NN N B N
] -
'ﬁ -
9 1-0—1 f ¢ S
? -"\\.".::l: -_'l-' . b
é ml N C . N |
Y ] ' =
E 7 M
g — \ N\ e .
» .
£ o5 ™ W _
. o ¢ ' b TR |
= 05 ‘.v\:"\w\’ XN %
- o, E
Y
_| “\ M."Mq—
- e
0.0
I I I [ | 1 I 1
UT(BRC) 67114 47120 47126 67102 47130 47144 UT(BEC)
OLAT 73, 78 73, &9 7. 2% 72, 09 74,80 71, 50 QLAY
GLON 22, 21 21, 40 21,01 RO, 44 19. @9 19, 23 GLON
ALT a4, 40 8345, 41 a9y, 42 859, A3 ane, 44 809, 44 ALY
APXLAT 70,02 &Y. 7Y &% %4 #9. 20 69, 08 40. 80 AMXLAT
APXLON 110, 22 109. 89 100, 78 108, 02 107. 20 104, 88 APXLON
APXLY 21, 203 @i, 293 R1. 102 2t 104 21, 087 21,041 APXLY

Figure 8, Total lon density from the DMSP SM instrument for the time interval defined in Figure 7. The tic

marks along the abscissa correspond to the 3-second locations indicated in Figure 7.
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The velocities are used in calculating C, from the T, and ¢ measurements taken
from the in-situ irregularity spectra (requiring the DMSP velocity and the local in-situ
velocity) and in calculating T (the 1Hz intercept of the phase spectrum) from the C,L esti-
mate (requiring the AIO-AFSAT IPP velocity and the in-situ velocity at the IPP). The
orbital velocity of the DMSP satellite and the horizontal cross-track in-situ plasma velocity
from the SSIES Drift Meter (DM) were used to calculate C;,, The ram-direction in-situ
velocity was not available due to failure of the SSIES Retarding Potential Analyzer (RPA),
which measures this parameter. The vertical velocity was very small with a large amount of
scatter due to low plasma density, so it was set to zero in the calculation. In initial calcula-
tions of the phase scintillation parameters presented in Report #2, only the AIO-AFSAT
IPP velocity was used (i.e., the in-situ velocity at the IPP was set to zero),

Two models were used for the axial ratios (a and b) of the irregularities, parameters
that are used to transform the various motions into an effective probe (or scan) velocity
through the irregularity field, One model was for simple rod-shaped irregularities elongated
along the magnetic field with a =20 and b =1, and the second was taken from the WBMOD
irregularity modell2!t, which provided for "wing-shaped" irregularities witha=17 and b =2,
Both models were used to generate the C, estimates from Ty and q and in generating phase
scintillation parameters from C,L. This provided an effective probe velocity of 7330 (6630)
m/s for the DMSP satellite for 20:1 rods (17:2 wings), and and effective scan velocity of 260
(225) m/s for the AIO-AFSAT IPP. Table 1 lists the results of the C,L calculation from the
SSIES SM data for both the 20:1 rods and 17:2 wings cases. The effective layer thickness
(Lefp) was calculated using the method described in Report #2,

Table 1. Results of SSIES SM C, L Calculations.
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67115 2.54 3.28x107 4.42x10249 1.45%1032 5.21x%1024 1,71x1032
67120 2.07 3.39%107 1.14x102% 3.78x1032 1,24x%1025 4.21x1032
67125 2.03 3.55%107 2.97x1024 1.05%1032 3.30x1024 1,17x1032
.25 3.71x107 8.83x1043  3.27x1037 1.00x1024 3,71x103!

2 3
67135 2.16 3.87x107 1.32x10%4 s5,11x103" 1.48%10%24 5,74%103!
2 3.61x103"  9.59%1023  3,96x103!

.25 4.13x107 8.51x10%3




3.2.2 AIO-AFSAT Scintillation Data

The AIO-AFSAT intensity and phase data were detrended using a 6-pole

- Butterworth low-pass filter with a cutoff at 0.01Hz (100 s=conds) and were resampled from
R the original 100Hz sample rate to 20Hz. The resampling was accomplished by averaging
ke five samples centered on the resample time and was done to shift the spatial/temporal
Lf range permitted by a 4096-point FFT to larger scale-sizes/lower frequencies. Estimates of
y 1 the intensity scintillation parameter (S,) were calculated in the time domain from 50-second
| ; data samples selected at S0-second intervals, and estimates of the phase scintillation param-

eter (04) were calculated in similar fashion from the detrended phase data.

Estimates of the phase spectral slope (p) and power at 1Hz (T) were calculated
! using a procedure similar to that used to calculate Ty and q from the DMSP SM data, Data
. samples of 4096 points (204.8 seconds) were selected at 100-second intervals, windowed
with a 30% split-bell cosine taper, and the resulting PDS was smoothed with a S-point
binomial-weight smoother, Parameters T and p were ti en obtained from a linear least-
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s squares fit in log(PDS) - log(frequency) over a specified iraquency range. The selection of
o the range for this fit was based on the desire to fit the AIO-AFSAT data over the same
s range of scale sizes as in the fits to the SM data. To do this, the range used in the SM data

e must be multiplied by the ratio of the effective velocity of the AIO-AFSAT IPP to that of

“ the DMSP satellite. This provided an initial fit range of 0.015 to 0.092 Hz, The effective
v scan velocity, ve, used in the initial calculations includes only the scan velocity due to the
W relative motions of the aircraft and satellite.
2y

3.3 Data Comparisons

g 3.3.1 Intensity Scintillation

Figure 10 shows the comparison between Sy calculated from the AIO-AFSAT inten-
' sity data (solid line) with estimates of S4 calculated from the C,L and q data from Table 1
b for two different irregularity geometries (diamonds for 20:1 rods, squares for 17:2 wings)
and calculated from the WBMOD model using only the standard inputs of date, time, SSN,
'»'j ' and K, (crosses). The points on the AIO-AFSAT curve labeled "retune” indicate Sy esti-
Sy mates that have been noticeably contaminated by sharp discontinuities in the intensity
record at receiver retune times, und the local peak at 18:38:30 labeled "focus" indicates an

& S4 estimate that is dominated by a single strong feature that has the signature of a sharp
3 focus rather than that of a scatter effect.

& | The agre.ment between the observed S, and the estimates calculated from the
| SSIES observations is excellent, particularly in light of the many assumptions made in gen-
erating the SSIES S, estimates. The agreement between the SSIES Sy values generated
using the 17:2 WBMOD model value for the irregularity axial ratios is slightly better than
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S4 Analysis - 8 Jan 1988
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Figure 10. Comparison of S4 calculated from the AIO-AFSAT intensity record shown In Figure 5 (solid line)
to 84 calculated from the SSIES C,L estimates for two irregularity models (17:2 wings - squares; 20:1
rods - diamonds) and from the WBMOD model (crosses). The two AlIO-AFSAT points labeled
"retune” included retune-discontinuities, and the point labeled "focus” contained a strong focus, ‘The
S4 values for these three points are unreliable,

op Analysis (0.01 Hz)- 8 Jan 1988

20. y T \ T - T T T '
P o
s ———— AIO-AFSAT ]
b @ SSIES (17:2 wings) b
18 | I
b &  SSIES (20:1 rods) .
s % Unmodified WBMOD 4
-
° L d
E 10 + ]
- 1
L 4
3 o
8 3 [u] \/"——\ "
—o -
b ° o
he x -
: x 8 g 8 §
0 5 | ) 1 A 1 &4 1 N
1834 1838 1838 1840 1842 1844

GMT

Figure 11. Comparison of 0 ¢ calculated from the AIO-AFSAT phase record shown in Figure 6 (solld line) to
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for the simple 20:1 rods, but only enough to indicate that if one assumes that all other
factors are correct, the irregularities tend to be more wing-like in shape than rod-like.

3.3.2 Phase Scintillation

After the good match between the estimated and observed Sy values, the first look at
the phase-scintillation results were very disappointing.  Figure 11 shows a comparison tor
the o4 purameter similar to that shown in Figure 10 for S4, With the exception of the
points at 18:36, all estimates from the SM data are low by more than a factor of 2, and the
better agreement at 18:36 is probably more coincidental than real. The agreement between
the values for T and p calculated from the SM data and those calculated from the AlO-
AFSAT data was no better, Table 2 lists p, T, and v¢ calculated from the SM data and
derived from the 100-second detrended AIO-AFSAT phase data, It is obvious from this

Table 2. Phase scintillation parameters from the SM and AIO-AFSAT data sets
(100s detrend; 17:2 wings),

p T g
GMT DMSP  AIO Ve DMSP AIO DMSP  AlO
66960 3.07 6.84 228 1.72%10%  1.89%107 4.72 5.07
67060 3.03 7.58 227 4.94x104  1,15%108 2.36 5.92
67160 3.25 7.07 226 1.05x104  6.04x108 1.74 5.46
67260 3.16 6.88 224 1.84%104%  2,19%10°7 1.90 8.26
67360 3.25  7.62 223 1.06x104  8.99x10° 1.74 15.65

m/s rad

table that there is something amiss, We were expecting problems due to uncertainty in the
velocities, but the results indicate that the velocity should be adjusted in one direction to
obtain a better fit to the vbserved a4 values and in the other direction for a better fit to T,
[Note: No comparison is given in Table 2, or in the following tables, between the AlO-
AFSAT phase-data set centered at time 66860 and the corresponding DMSP data set as the
phase-datu set at this time contains severe contamination from aircraft motion at the end of
a turn from north to south.|

The clue to this problem is in the large values for the phase spectral slope, p,
obtained from the phase data, Datn collected over a three-year period from the HiLat and
Polar BEAR satellites at Tromso, Norway, indicated that the average value for this slope at
the scule sizes of interest here (a few kilometers) should be around 2,75 with a standard
deviation of about 0.5, This would place all of the AIO-AFSAT values for p eight to ten




standard deviations above the average, while the estimates from the SM data are just one
standard deviation or less above the average.

Figure 12 contains the PDS derived from the AIO-AFSAT phase data sample
centered at 67160 seconds (18:39:20 GMT). The dotted line over the AIO-AFSAT PDS
shows the fit from which T and p were extracted, and the dashed line over the lower portion
of this PDS is from a fit over a frequency range of 0.1 to 1.0 Hz, The slope of this second fit
is 3.41, much closer to both the p derived from the in-situ data (3.25) and to the average
value from the HiLat/Polar BEAR data set, There appears to be a great deal of low-
frequency phase noise in the AIO-AFSAT data, starting at about 0.1 Hz (10 seconds).

A second indication that there is contamination in the phase data can be found in
qualitative comparison of the intensity and phase records plotted in Figures 5 and 6. With
some minor exceptions, there is little correlation between the gross features in these two
records, The intensity record shows an initially disturbed propagation environment which
gradually transitions to a mostly undisturbed environment. If anything, the phase record
shows the opposite.

The source of this noise, if that is indeed what it is, is uncertain. Previous studies(!2|
have found that aircraft motions will introduce phase noise at low frequencies, but at time
scales on the order of minutes rather than tens of seconds, In detrending the phase data at
progressively shorter detrender cutoff times, we may have identified one potential source,
Figure 13 shows the AIO-AFSAT phase data detrended with a cutoff of 0.05 Hz (20
seconds). Again, there is little apparent correlation with the intensity record, but a very
suggestive signature has appeared. This record looks very much like a classic "beat" pattern
generated by the sum of two signals with slightly differing frequencies. Since the AIO-
AFSAT phase data are generated using a local oscillator to synthesize the phase reference,
a slight difference between the frequency of the local oscillator and the AFSAT transmitter
could result in addition of phase noise from this sort of beat pattern. Such a difference
could easily arise from any number of different sources, and could be exacerbated by the
automatic frequency shifts in the AFSAT transmissions at 168-second intervals. A possible
geophysical source could be scintillation from large-scale features in the auroral E region,
which is speculated to cause a steepening of the low-frequancy end of phase spectra in data
from the various DNA beacon satellitesti?, However, the slopes shown in Table 2 are
steeper than those reported from the DNA satellites (on the order of 5.0).

After some experimentation with various detrender cutoff frequencies, we decided
to use a cutoff of 0.075Hz (13-1/3 seconds) for calculating v 4 and to derive T and p from a
fit to the phase PDS over the frequency range 0.1 to 1.0 Hz, Figure 14 shows the AIO-
AFSAT phase for the time period under analysis detrended at 0.075 Hz, and Figure 1§
shows the comparison of o4 calculated from the AIO-AFSAT data detrended at 0.075Hz
and that calculated from the SM data and from WBMOD, It is still difficult to correlate
qualitatively the phase record in Figure 14 to the intensity record in Figure 3, but the v
record in Figure 15 is now behaving in roughly similar fashion to the S4 record in Figure 10
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Figure 12. Power density spectrum (PDS) of phase, detrended by end-maiching and removing the residual
mean, for a 4096-point data sample (204.8 seconds) centered at 67160 seconds. The dotted line is a

linear fit to log(PDS) and log(f) over the range 0.015 Hz to 0,092 Hz, and the dashed line is a linear fit
over the range 0.1 to 1.0 Hz,
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Figure 15. Comparison of 0 ¢ calculnted from the AIO-AFSAT phase record shown in Figure 14 (solid line)
to U ¢ calculnted from the SSIES CyL estimates for two irregularity models (17:2 wings - squares; 20:1
rods - diamonds) and from the WBMOD model (crosses).

Table 3. Phase scintillation parameters from the SM and AIO-AFSAT data sets
(13-1/3s detrend; 17:2 wings).

p T S
_GMT  DMSP AIO v  DMSP _ __ AlO___  DMSP  AIO
66960 3.07 3.22 228 1.72%x10-3  4.08x104 0.59 0.46
67060 3.03  3.21 227 4.94x104  3,03x10 0.31 0.36
67160 3.25 3.41 226 1.05%x10%  2.03x10 0.18 0.36
67260 3,16 3.43 224 1.84x104  2.04x10% 0.22 0.39
67360 3.25 3.70 223 1.06%104  1.97x10 0.18 0.40

m/s rad




The match with the o4 values calculated from the SM data is still, however, not nearly as
good as that between the two S, caleulations.

Table 3 presents a comparison of the new results to the calculations from the SM
data. While there is still general disngreement between the two data sets, they are in much
closer agreement than before, and the AIO-AFSAT results look far more reasonable than
those presented in Table 2. In particular, the phase spectral slopes from the AIO-AFSAT
data are more in line with both the in-situ results and those obtained from the Hil.at/Polar
BEAR experiments, and (with one exception) the adjustments required to bring the T and
0 ¢ values into agreement are now in the same direction.

In all phase calculations to this point, it was assumed that the in-situ drift velocity at
the AIO-AFSAT IPP was zero. As we have no direct measure of this, we will use this
velocity as a free parameter which will allow us to adjust the effective scan velocity, v, to
bring the various phase parameters generated from the SM density data into line with those
generated from the AIO-AFSAT phase data, This will be done for three measures of the
phase scintillation: T, 0 ¢, and the PDS.

The power-law phase-screen equation used to calculate T from C,L s
T = N(\,q) sact CyL vg? [1]

where N(\,q ) is a normalization function of the wavelength (N) and in-situ spectral slope
(¢), and ¢ is the angle between the local nadir and the line-of-sight propagation direction at
the IPP. If we need to calculate the effective velocity required to adjust a previously calcu-
lated T to an observed value for T, Equation [1] can be used to generate the following rela-
tionship:

1/
, Tobs d
Vg * | —— Vg - [2]
Tcalc

Since ug is proportional to the square-root of T, a similar equation can be generated for
this parameter:

2
\ T¢obs /q
Vg = Vo [3]

Upcale

These equations were used to calculate the effective velocities required to match the T and
o ¢ values obtained from the AIO-AFSAT phase data using the C,L estimates from the SM
density data, Tables 4 and 5 present the results of these calculations. In both tables, T and




Table 4,

Phase scintillation parameters from the SM and AIO-AFSAT data sets
(13-1/3s detrend; 17:2 wings; v, from T).

oL
GMT Ve DMSP ~AIO DMSP  AIO
66960 113 4.08x104 4,08x10¢ 0.31 0.46
67060 178 3,03x104  3,03x10% 0.26 0.36
67160 303 2.03x104  2,03x104 0.27 0.36
67260 235 2.04x104 2,04x104 0.24 0.39
67360 294 1.97%10%  1,97x104 0.27 0.40

m/s rad

Table 5.  Phase scintillation parameters from the SM and AIO-AFSAT data sets
(13-1/3s detrend; 17:2 wings; v, from vg).

()] ¢
GMT Ve DMSP AIO DMSP  AIO
66960 179 9.42x104 4.08x10% 0.46 0.46
67060 263 5,99x104 3,03x104 0.36 0.36
67160 418 3.72x%104  2,03x104 0.36 0.36
67260 381 5.15x104  2,04%104 0.39 0.39
67360 453 4.65x104 1,97x104 0.40 0.40

m/s rad

0 ¢ are calculated from the SM C,L. estimates using the v, value generated by either Equa-
tion [2| (Table 4) or |3] (Table 5).

The third comparison used to make an estimate of the effective scan velocity is
between the in-site density PDS trom the SM density data and the phase PDS from the
AlO-AFSAT phase data. The cffective scan velocity can be used to change the PDS from a
function of frequency (temporal variations) to u function of wavelength (spatial variations)
by dividing the frequency scale by v.. Therefore, the SM in-situ PDS can be "shifted" into
the frequency domain of the corresponding AIQO-AFSAT PDS by multiplying the frequency
scale by the ratio of the AIO-AFSAT effective scan velocity to the DMSP effective probe
velocity, Figures 16 through 20 show comparisons of the corresponding SM in-situ density




In-Situ and Phase Spectra - 67120 / 66960
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Figure 16, Power density apectra from (a) SM density data centered at 67120 (left ordinate scale) and (b) the
AlO-AFSAT phase data (0.01 Hz detrend) centered at 66960 (right ordinate scale). The SM PDS has
been shifted in log-frequency by -1.76 to compensate for the different effective scan velocitiea of the
SM and AIO-AFSAT data sets. The short vertical bars indicate a potentially-common feature in the
two spectra (ses text), The horizontal solid bar indicotes the value for T derived from the AlO-
AFSAT phase spectrum (0.1 to 1.0 Hz fit), and the horizontal dotted line indicates a value for T
derived from the SM density data using a 265 m/s effective scan velocity.




In-Situ and Phase Spectra - 67125 / 67060
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Figure 17, Power density spectra from (a) SM density data centored at 67123 (left ordinate scale) and (b) the
AlO-ANSAT phase data (0.01 Hz detrend) centared at 67060 (right ordinate scale). The SM PDS ha
been shifted in log-frequency by -1.57 to compensate for the different effective scan velocities of the
SM and AIO-AFSAT data sets. The short vertical bars indicate a potentially-common feature in the
two spectra (see text). The horizontal solid bar Indicates the value for T derived from the AIO-
AFSAT phase spectrum (0.1 to 1.0 Hz fit), and the horizontal dotted line indicates a value for T
derived from the SM density data using a 265 m/s effective scan velocity.
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In-Situ and Phase Spectra - 67130 / 67160
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Figure 18. Power density spectra from (a) SM denaity data centered at 67130 (left ordinate scale) and (b) the
AlO-AFSAT phase data (0.01 Hz detrend) centered at 67160 (right ordinate scale). The SM PDS has
been shifted in log-frequency by -1.34 to compensate for the different effective scan velocities of the
SM and AlO-AFSAT data sets, The short vertical bats Indicate a potentially-common feature in the
two spectra (sec text). The horizontal solid bar indicates the value for T derived from the AlIO-
AFSAT phase spectrum (0.1 to 1.0 Hz fit), and the horizontal dotted line indicates a value for T
derived from the SM density data using a 265 m/a effective scan velocity.



In-Situ and Phase Spectra - 67135 / 67260
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Figure 19. Power density apectra from (a) SM density data centered at 67135 (left ordinate scale) and (b) the
AlO-AFSAT phase data (0.01 Hz detrend) centered at 67260 (right ordinate scale), The SM PDS has
been shifted in log-frequency by -1.45 to compensate for the different effective scan velocities of the
SM and AIO-AFSAT data sets. ‘The short vertical bars indicate a potentially-common feature in the
two spectra (see text), The horlzontal solid bar indicates the value for ‘T derived from the AlO-
AISAT phase spectrum (0.1 to 1.0 Hz fit), and the horizontal dotted line indicates a value for T
derived from the SM density data using a 265 m/s effectlve scan velocity,
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In-Situ and Phase Spectra - 67140 / 67360
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Flgure 20, Power density spectra from (a) SM denasity data centered at 67140 (left ordinate scale) and (b) the
AlO-AFSAT phase data (0.01 Hz detrend) centered at 67360 (right ordinate scale). The SM PDS has
been shifted in log-frequency by -1.35 to compensate for the different effective scan velocities of the
SM and AIO-AFSAT data sets, The short vertical bars indicate a potentially-common feature in the
two spectra (se¢ text). The horizontal solid bar indicates the value for T derived from the AlO-
AFSAT phase spectrum (0.1 to 1.0 Hz fit), and the horizontal dotted line indicates a value for T
derived from the SM density data using a 265 m/s effective scan velccity.
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PDS, shifted using the effective velocities from Table 4. to the AIO-AFSAT phase PDS.
[Note: The Jow-frequency "roll-off" in the phase PDS in these plots is due to the detrender,
which hud a cut-off frequency of 0.01Hz.|

In working with these spectra, a pattern of similar features in the in situ and phase
spectra began to emerge. These features show up most clearly in the spectra in Figure 18,
which compares the data sets taken at i'1e intercept latitude/time, and in Figure 21, a plot of
the average of the in situ and phase spectra from Figures 18-20 in which the in-situ spec-
trum has been shifted to align the similar features in ti.e two spectra, which requires an
assumed effective scan velocity of 265 m/s. There are three features marked in this plot:
two local minima at log(f) of -1.37 (0.043Hz) and -0.90 (0.126Hz), und a local enhancement
at log(f) of -0.76 (0.174Hz) (a single broad cnhancement in sitv and a pair of narrow
enhancements in phase). Using the assumed value for v,, these features would be at scale
sizes of 6200m, 2100m, and 1500m, respectively. These feature: can also, to some extent, be
found in most of the other spectra a« well, most noticeably the enhancement which has been
marked in all five of the individual spectra,

The effective velocity required to align these features is fairly close to the v, calcu-
lated using the T observations for the last three data sets, The horizontal solid and dotted
lines on the PDS plots indicate the observed T (solid) and T calculated using 265 m/s for
the effective scan velocity (dotted). At least in the last three spectra, the differences
between these values for T is within the noise evident in both spectra. The results for T and
0 ¢ using ve = 265 m/s are compared to the observed values in Table 6.

Table 6. Phese scintillation parameters from the SM and A1O-AFSAT data sets
13-1/3s detrend; 17:2 wings, v, from PDS),

T Ud
GMT Ve DMSP ATO DMSP  AIO
66960 265 2.35x10-3  4.08x104 0.69 0.46
67060 265 6.76x10%  3.03x104 0.36 0.36
67160 265 1.50x104  2.03x104 0.22 0.36
67260 265 2.64%10%  2.04x104 0.26 0.39
67360 265 1.56x104  1.97x10¢ 0.22 0.40

m/s rad

The results ot this comparison of individual spectral features should be viewed with
some caution. While the resulting effective scan velocity obtained is in excellent agreement
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Figure 21. Average phase and (n-sitte power density spectra constructed from the spectra in Figures 18-20.
The vertical lines indicate the location of features described in the text. The in.situ spectrum has been
shifted to align the marked features in the two spectra, which impliea an effective scan velocity in the
phase data of 265 m/s.




with that obtained from the comparison of the T values, the features used in the analysis are
not far removed from the noise in the spectra. In addition, there will be features in the
phase spectrum due to propagation effects that have no correspondence, other than coinci-
dence, to features in the in-situ spectrum, All of this notwithstanding, these features do
appear in nearly all of the spectra reviewed, and the robustness of these features to differ-
ent ways of processing the data indicate that they are not processing artifacts.

3.4 Discussion of Results

The results of the data comparisons for this single event are somewhat mixed, The
intensity-scintillation comparisons indicate that, for this data set, analysis of the DMSP
SSIES data was able to quantify the level of intensity scintillation encountered on & ray path
passing through the section of the ionosphere sampled by the instrument The results were
good enough that, barring luck and coincidence in this single case, they should be borne out
in analysis of the remaining five days' data sets, Part of the confidence in this result comes
from qualitative comparison of the detrended intensity (Figure $) and density (Figure 9)
data sets. Both show a great deal of small-scale structure at the beginning of the data
interval, decreasing steadily through the end of the interval.

The results from the phase-scintillation comparisons are not as clear (nor as posi-
tivel) as those from the intensity scintillation, but they at least show some promise. When
the discovery was made that the AIO-AFSAT phase data were in some way contaminated
by low-frequency noise, the analysis of the phase data was nearly abandoned. The analysis
was carried as far as it was due to the discovery of similar features in the spectra generated
from the two data sets which appeared at nearly the same scale sizes (see Figure 18). In the
discussion that follows, the basic assumption is made that the spectral slope is relatively
constant over the frequency range 0.012 to 1.0 Hz, corresponding riughly to a scale-size
range of 25 kilometers to 300 meters, which covers the ranges spanned by the fits made to
the SM data (25 to 1.5 kilometers) and the AIO-AFSAT data (3 kilometers to 300 meters).
This assumption cannot be fully verified with these two data sets, but the slopes of the high-
frequency end of the SM spectra, which reach down to scale sizes on the order of 600-700
meters, do not appear to differ drastically from that obtained from the lower-frequency
sections. In short, this is not an unjustifiable assumption,

Making this assumption, the following observations can be made from the phase-
paranieter comparisons:

a. The effective velocity required to adjust the phase parameters calculated from
the SM data to match the corresponding parameters derived from the AIO-AFSAT data
ranged from about 115 to 455 m/s and averaged around 280 m/s. The velocities required to
match T and o increased from the northern end of the data segment to the southern end
(which agrees generally with the cross-track velocities obtained from the DMSP DM sensor,
which increased from 150 m/s in an anti-sunward sense to 400 m/s in a sunward sense),




while the velocities required to align the spectra appear to be constant across the data inter-
val at 265 m/s.

b. The spectral slopes (p) generated from the phase spectra were slightly steeper
than those calculated from the in-situ spectra (q+1), If a comparison of these slopes is
valid, considering the difficulties with the AIO-AFSAT phase data and the different scale-
size range fit to obtain the slope from the spectra, this would indicate that there is relatively
more power in the low frequency (large-scale) end of the spectrum than at the high-
frequency (small-scale) end at the DMSP altitude (roughly 850 km) than there is in the bulk
of the irregularity layer (roughly 300-350 km). This relationship between the in-situ spectral
slope and the phase spectral slope differs from that found in a comparison of DE-2 RPA
density data collected in the northern polar cap with VHF phase measurments made using
AFSAT signals collected at Thule, Greenland(3l. This study found an average phase spec-
tral slope (p) of between 2.2 and 2.4, and an average in-situ slope (q) of 1.9, These values
differ from each other by much less than the unity difference called for by weak-scatter
phase-screen theory, Moreover, they are both much less than both the phase and in-situ
values reported here and a value of 2,75 derived from an analysis of over two years of
HiLat data collected at Sondre Stromfjord, Greenland, Without knowing exactly the scale-
size ranges over which the fits were made to determine the slopes, it is difficult to explain
this discrepancy.

¢. When the effective velocity is set so that the T values agree, the o4 values calcu-
lated from the phase data is systematically 50-60% higher than that calculated from the
density data. Roughly a quarter of this can be accounted for by the difference in p values
described above and residual power in the spectrum at frequencies below the detrender
cutoff frequency, but the remaing r is still unexplained. This may represent more eftects of
the low-frequency noise, but it is impossible to tell from this data set.

In summary, the phase-data comparisons give indications that the various phase-
parameter estimates made from the SM data (p, T) v, and the phase PDS) are reasonably
close to the values observed in the AIO-AFSAT data, but the lack of good measurements of
the in-situ drift velocity at the AIO-AFSAT IPP and the low-frequency phase noise in the
AlO-AFSAT phase data make It impossible to draw firm conclusions. The remaining data
from the campaign should be processed to find if the AIO-AFSAT phase data are contami-
nated in all six data sets, and future campaigns should either find a way to remove or reduce
the phasc noise in the AIO-AFSAT data or use a phase-coherent transionospheric radio
link, such as GPS or Polar BEAR, to provide the phase scintillation data for comparison to
the DMSP SM estimates.




4. SSIES Observations of Equatorial Irregularities

During the month of August, 1988, the Defense Nuclear Agency (DNA) conducted
an extensive multi-sensor data-collection campaign near Kwajalein Island to assess the
effects of ionospheric scintillation on radar signal propagation (Propagation Effects
Assessment - Kwajalein, or PEAK). This campaign was used as a target of opportunity to
conduct an assessment of the potential for using the DMSP SSIES data for characterizing
scintillation in the equatorial region. In this section we will present a very brief review of
nighttime equatorial F-region scintillation including previous analyses of high-altitude
(> 800 km) in-situ plasma density observations, followed by a description of the PEAK
campaign and the results obtained from analysis of data from the DMSP F8 and F9 SSIES
instruments.

4.1 Nighttime Equatorial F-Region Scintillation - A Micro-Review

There are two major sources of nighttime scintillation in the equatorial regionl!sl:
large three-dimensional plasma-depletion structures known as bubbles(!S] or plumesiiét?)
and quasi-periodic plasma-density structures confined in altitude to the bottomside F2-
region known as bottomside sinusvidal (BSS) Irregularities(!®1%l, The two sources have
different morphologies and different effects on transionospheric propagation - the plume
structures can cause quite severe scintillation even at GHz frequencies, while the BSS irreg-
ularities will produce moderate levels of scintillation at VHF and lower UHF. Since the
BSS irregularities are restricted to the battomside F region, it will be impossible to observe
them directly with an in-situ sensor on DMSP, They are included in the discussions that
follow as (1) they may be a major limitation to the usefulness of the DMSP SSIES data in
characterizing equatorial scintillation levels, (2) they could explain some of the discrepen.
cies found in the analysis of data from the PEAK campaign discussed in later sections of
this report, and (3) it may be possible to infer indirectly the presence of BSS irregularities
from the spatial/temporal behavior of the background plasma density as observed by the
SSIES instruments,

4.1.1 Equatorial Plume Structures

It is generally heldi20l that the plume structures are the result of plasma depletion
"bubbles" that form on the bottomside of the F layer during the post-sunset period when the
F layer Is lifted in altitude by ExB forces, intensify due to the generalized collisional
Rayleigh-Taylor (GRT) instabilityl2!], and propagate upwards into the topside F region to
altitudes above 1000 kmi*223), Longitudinal cross sections of these structures made by
incoherent scatter radarsit617) show them to be wedge-shaped regions tilted toward the west
extending from below the F-layer density peak well into the topside ionosphere. The east-
west horizontal extent is on the order of 100-200 km, and the structyres travel eastwards
with velocities on the order of 100-200 m/s. Airglow studies at 6300 Al24 have shown that
the plume structures are oriented along magnetic flux tubes, often extending thousands of




kilometers from one end of the flux tube to the other in the opposite hemisphere. The
plumes begin to appear within an hour or so of local sunset, and have typically run their
course and blended back into the background plasma structure within a few hours after
local midnight,

In general, the seasonal occurrence frequency of the plume structures peaks near the
equinoxes, occasionally with secondary maxima at one or the other solsticel!4), Details of
the seasonal variation at a particular station are strongly dependent on the station's
longitude sector, This strongly coupled longitudinal/seasonal morphology is quite
complicated and is not yet well understoodi!4l. Although the mechanism for the growth of
the plumes is almost certainly the nonlinear GRT instability, there are two sources of
modulation on the production of plumes that may be controlling the longitudinal.seasonal
morphology. The first is the requirement for a "seed" mechanism to provide the initial small
perturbation in the bottomside F-region density which then grows into the plume structure
via the GRT instability, and the second is a number of mechanisms that can either enhance
or inhibit the GRT instability. A commonly mentioned seed mechanism is gravity waves,
generated either locallyl3®) or propagating upward from lower in the atmospherel(2s), that can
interact with the bottomside plasma to produce sinusoidal variations in density. A mixed
bag of mechanisms have been proposed which could control the GRT instability once the
bubble has formed, including (1) variations in the reversal time of the zonal electric field(?),
(2) asymmetry in field-aligned currents generated by the E-region dynamol3), (3) the
transequatorial component of thermospheric neutral winds which can alter the Pedersen
conductivity along the field line(?3), and (4) variations in the longitudinal gradient of the
field-line integrated Pedersen conductivity controlled by the solar and magnetic declination
anglesi3!l, The interplay and relative importance of these mechanisms in producing the
observed longitudinal-seasonal morphology is still an open and active area of investigation.

4.1.2 Equatorial Bottomside Sinusoidal Irregularities

Equatorial bottomside sinusoidal (BSS) irregularities were first observed using in-
situ data from the AE-C and AE-E satellites(1832] and have been associated with moderate
VHF and UHEF scintillation extending over periods five to six hours in length{!%l, Only a few
studies have been made of this type of irregularity, so only a little is known of its spatial and
temporal morphology. It is a nighttime phenomenon, with the peak in diurnal occurence-
frequency near local midnight and seasonal frequency peaks near the solstices. It is limited
in altitude extent to a layer 50 to 100 km in depth along the bottomside of the F-layer peak.
The horizontal extent is large, with east-west extents ranging from 1000 km to 7500 km. No
values have been given for typical north-south extents, but these irregularities are predomi-
nantly found within the dip latitude range of -10° to + 10°. Onset and decay of scintillation
from BSS irregularities has been found to be nearly simultaneous at widely spaced (in longi-
tude) locations, which may indicate that the physical mechanisms controlling the BSS irreg-
ularities act over large spatial scales!!l, These irregularities appear to be coupled to




frequency-spread F, while the plume/bubble structures are associated with range-spread
Flis],

4.1.3 Topside Studies of Equatorial Irregularities

Satellite-based observations of irregularities in the topside equatoriel ionosphere
have been made for over two decades using both remote sensors, such as topside
sounders(333%), and in-situ probes(153233-37),  While numerous studies have been made
covering the topside ionosphere from the F2 peak to well over 1000 km, the most germane
of these studies to the work described in this report is that conducted by Young ef. al.[%"
using data from the Retarding Potential Analyzer (RPA) on the DMSP F2 and F4 satellites.
In their study, which could be considered a direct predecessor of the current project, they
showed that an in-situ probe on a DMSP satellite in the pre-noon/pre-midnight orbital
plane encounters irregularities that probably are the high-altitude sections of equatorial
depletion plumes. They found a longitudinal bias in the observations, identified a number
of problems with the DMSP orbit for making routine synoptic observations of equatorial
scintillation-producing irregularities, and developed a zeroth-order probability mode! for
observing the plume structures from the DMSP satellite. Details of this study, and compar.
isons of their results to results from the current study, will be presented where appropriate
in the following sections.

4.2 PEAK Campaign Description

The purpose of the DNA PEAK campaign, as stated above, was to collect data from
a number of {onospheric probes, both remote and in-situ, which could be used to charac-
terize plasma density irregularities in the equatorial ionosphere in order to assess the effect
of these irregularities on transionospheric radar propagation. The campaign ran during the
period 3-31 August 1988, with most of the ground-based instruments located on islands in
the Kwajalein Atoll (9°24'N, 167028E). Of the various data sets collected, the following
have been made available for this study:

a. SSIES data from both F8 and F9 DMSP satellites for the entire month of August
(provided by F. J. Rich, GL/PHG).

b. Intensity scintillation data (S4) from a UHF link from Kwajalein Island to a
FLTSAT satellite located over the equator at 172° E longitude for the period 3-31 August
(provided by R. T\ Tsunoda, SRII).

¢. Intensity scintillation data (S4) from UHF and L-band links to the HiLat and
Polar BEAR satellites obtained at Kwajalein Island with the DNA ROVER receiver for the
period 1-29 August (provided by E. J. Fremouw, NWRA),

Although longitudinal-scan maps of the ionosphere similar to those presented in Tsunoda
et. al1\" were made periodically throughout the PEAK period using the Altair radar, we




were unable to obtain them in time to include them in this study. We hope to have access to
them prior to the completion of this project to aid in interpreting and perhaps under-
standing some of the discrepancies described later,

4.3 Data Description

4,3.1 DMSP SSIES Data

Much of the effort for this project was in processing the SSIES SM data. The plan
was to process the SM data from the magnetic latitude range +40° to -40° for the pass
nearest Kwajalein and the passes prior to and after this pass for each day for the descending
(nighttime) passes from both satellites - a total of 186 partial orbits including 3720 minutes
of data, These data would then be plotted to form a catalog of ion-density plots for
comparison with the othur data sets.

With the large volume of data to be processed, it was clearly impossible to employ as
much manual intervention in interpreting the data as had been done with the limited data
set used in the high-latitude study (a total of 30 minutes of data), as this would have been
prohibitively expensive in both computer and manpower resources. The major problem
that had to be dealt with in order to process much of the data was that of the floating range
flags described in earlier reports (see Appendix B in Report #2). This problem was
alleviated by processing several passes from both F8 and F9, extracting the electrometer

range data from these passes, and generating an updated look-up table for the electrometer
range data for use in processing the SM data, While this did not solve all problems relating
to the floating flags, it did reduce the number of these down to an acceptable level. The
processing was done using software based on the operational software package used at the
US Air Force Global Weather Central for routine processing of the SSIES data(%),

A more serious problem, related to sensor behavior rather than processing difficul-
ties, was that in large segments of s: 'eral passes the electrometer appeared to "freeze" at a
value equal to one of the range flags. This tended to happen when the ionosphere was very
smooth and at nearly constant density. A sample of this problem was identified in our last
annuval report (see Figure B-07, page B-7, in Report #2), The builders of the SM
instruments at the University of Texas at Dallas (UTD) are aware of this problem and have
corrected all SM instruments not now in orbit, so both this and the floating-flags problem
will be corrected on the next SM instrument to be launched.[3?)

Figures 22 through 27 are samples of the data obtained from this processing. (The
entire catalog of 31 days is included in the appendix to this report,) Each figure shows the
total ion density plotted against time for each of the six partial orbits (passes) processed for
a specific date. Each plot contains 20 minutes of data starting (roughly) at +40° geomag-
netic (modified apex) latitude. The first three plots (a) in each set are from F8 and the last
three (b) from F9. The center plot on each page is from the pass nearest (in location)
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Figure 24b, Total jon density measured by the SM sensor on DMSP F9 near Kwajalein Atoll on 13 August
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Figure 27a, Total jon density measured by the SM sensor on DMSP F8 near Kwajalein Atoll on 12 August
1988. The axis runges and labels are as in Figure 1a,
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Figure 27b. Total fon density measured by the SM sensor on DMSP F9 near Kwajalein Atoll on 12 August
1988. The axis ranges and labels ere as in Figure 1a,




Kwajalein on that day, the top plot is from the prior pass (east of Kwajalein), and the
bottom plot is from the following pass (west of Kwajalein)., The density scale is the same in
all plots, ranging (linearly) from 0.0 to 2.0x10° ion/cm3, (Note: The density plots "wrap-
around" if the density is over 2.0x105; i.c., a density of 3,0x10°% is plotted at 1.0x105,)

These six days were chosen to illustrate a number of features and behaviors noted in
the data set as a whole. The center F9 pass in Figure 22b (24 August) is what could be
considered a "classical" plume signature - a smoothly varying density that suddenly drops
into a highly structured depletion and just as suddenly returns to a smooth trace. Our
expectation when entering this study was that when we encountered a plume, or a patch of
irregularities, this is the signature we would see. In fact, this case is one of the few of this
type found in the entire data set, Figure 23b (31 August) shows several examples which are
more typical of what was observed. All three F9 passes show areas of structured plasma,
but only the center one is even remotely like a "classical" plume, and none of the three is
very similar to the other two. (Note: The "fuzz" on the density trace in the east pass from F8
is an instrumental artifact of some sort. This effect shows up on several plots, The dashed-
line effect in this plot is an example of the "freezing" problem described earlier.) The range
of behavior observed in the set is bracketed by the plots in Figures 24 (13 August) and 25
(28 August). The density traces in Figure 24 are featureless save an occasional instrumental
anomaly, and the large plume structure in Figure 25b is the largest in both latitudinal extent
and in "depth” found in the data set.

The final two sets are included to illustrate other behaviors noted in the full set. We
had been expecting, again with some naivete, to see a "double-hump" signature in the icn
density centered on the geomagnetic equator and associated with the Appleton a:iomaly,
particularly in the F8 data taken near the sunset terminator. In fact, this type of signature
was seen in only 9% of the passes (16 of 186). Figure 26 (4 August) shows the passes from
the only day in which a majority of the passes showed this signature. The small structure
shown in the west F9 pass near 8° latitude, with a density enhancement adjacent to a more
nearly classical depletion signature, is more typical of the irregularity structures seen in this
data set than the classical signature shown in Figure 22. Finally, the west F9 plot in Figure
27 (12 August) shows a feature that is, at this time, a puzzle, It does not appear to be an
instrumental artifact, and a nearly identical feature appeared in nearly the same location in
the west F9 pass on 8 August. Best guesses to date on what they might be are either a large
TID-like structure or the result of a very localized piston-like heave of the ionosphere from
below, forcing ionization up field lines to regions of lower loss, These two features were not
included in this study as irregularity structures, but it would be interesting to find out what
they really are.

Once the catalog was completed, a small database was constructed for comparison
with the other data sets that contained, for each day, the maximum density in each of the
passes exciusive of density in an irregularity structure or in odd features such as that shown
in Figure 27, and a flag indicating whether an irregularity structure was found in one of the
F9 passes. No irregularity flags were required for the F8 passes, as none of these passes




showed any structure, The variation of the maximum density for the east, center, and west
passes for both satellites through the month are shown in Figures 28 and 29. The x's along
the abscissa indicate days on which irregularity structures were observed in the F9 data, In
the F8 plots, the x's mark days in which the corresponding F9 pass (cast, center, or west)
showed a structure, (Note the difference in the density scale between the F8 and F9 plots.)

4.3.2 FLTSAT Sy Data

Figure 30 shows the Kwajalein-FLTSAT UHF S, date summary plots provided by
Roland Tsunoda, The times of the nearest passes from both F8 and F9 are indicated on
these plots by an 8 or 9, respectively, A circled "9" indicates that an irregularity structure was
observed on that F9 pass. The vertical lines crossing all plots on each page at 0710 GMT
and 1030 GMT indicate the times at which the nearest F8 or F9 pass would be overhead at
Kwajalein. All F8 (F9) passes to the left of the 0710 GMT (1030 GMT) line are east of
Kwajalein, and all passes to the right of the line are west of Kwajalein. The heavy hori-
zontal lines on these plots indicate times at which the Altair radar was being operated as
part of the PEAK experiment, and the X's indicate times of questionable data (interference,
equipment problems, etc.). The FLTSAT satellite is located on the equator at 172° east
longitude, so the jonospheric penetration point is very near to Kwajaleln. For the purposes
of this study, we will assume that it is at Kwajalein. A daily (or nightly) scintillation "severity
index," defined as the number of hours during the observing period that S, was above 0.5,
was generated for each of the days shown in Figure 28 and added to the database generated
from the DMSP SM data. In a recent discussion of these data with Roland Tsunoda, we
requested Altair longitude-sweep maps (if available) for the times of the F9 center passes
on 8, 18, 19, 24, and 28 August. If such data exist, he will try to send preliminaty plots in the
next month,

The plots in Figure 31 are taken from the DMSP/FLTSAT database we have gener-
ated, The top plot shows the variation of the 10.7 cm solar radio flux (solid line) und the
daily Ap index (bar plot) for the month of August, 1988, As can be seen from the Ay plot,
the entire month was fairly quiet geomagnetically, with only two moderately diaturbed
periods. The center plot shows the variation of the average of the three maximum jon
densities for each day for F8 (solid line) and F9 (dotted line). The bottom plot shows the
variation of the number of hours that S, on the FLTSAT link was above 0.5 (solid line) and
the days and passes on which an irregularity structure was observed in the F9 data (x
marks). (The lower part of this last plot is interpreted as follows: an x in the upper position
for a given day (such as on 12 August) indicates that a structure was observed on the east
pass, on x in the center position (24 August) indicates one in the center pass, and an x in the
lower position (9 August) indicates one in the west pass. On 31 August, for instunce, all
three passes showed structuring.)
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Figure 31, Plots of (a) 10.7cm solar radio flux (solid line) and the daily A, planetary magnetic incex (bars);
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Center, W - West) for August 1988, 55




4.3.3 HilLat/Folar BEAR §,4 Data

The final data set included in this study is a database of UHF (413 MHz) and L-band
(1239 MHz) intensity scintillation observations (S4) from HiLat and Polar BEAR passes
collected by the ROVER receiver at Kwajalein. This database has 1445 S4 observations
from 55 passes taken between 1 and 29 August covering a local time interval of 1800
through 0100. Figures 32 and 33 are scatter plots of the UHF and L-band S4 values in this
davabase, respectively, plotted against the date. The dotted line at S4 = 0.2 indicates the
estimated noise threshold for this data set (Lansinger, private communication), and the
dashed line is at S4 = 1.0. As in the lower plot in Figure 31, the dates and passes on which
structures were found in the F9 data are identified in the lower section of both plots,

4.4 Discussion of Results

It is obvious from the comparisons of the FLTSAT S, and ROVER Sy to the DMSP
structure observations {iower plot in Figures 31-33) that in situ density observations from a
satellite 1n the nominal DMSP orbit will not provide an unambiguous indication that intense
scintillation is occurring in a particular Jongitudinal sector, There are only two unequivocal
staternents that can be made from a comparison of the scintillation activity at Kwajalein and
the presence (or absence) of irregularity structures in the F9 data: (1) if an irregularity
structure is observed in the FS cer  r pass (5 cases), UHF scintillation at S, levels greater
than 0.5 were observed at Kwejalein, and (2) if there was no scintillation observed at
Kwajalein {4 cases), there were no irregularity structures in any of the three F9 passes for
that day. In other words, if an irregularity structure is observed, it is a good indication of
intense scintillation activity in that longitude sector, and if no scintillation is being observed
on the ground for an entire rvening, it is very unlikely that an irregularity structure would be
observed by any DMSP pass through that longitude sector. What cannot be said, unfortu-
nately, is that if there are no irrepularity structures in the DMSP data then there is no scin-
tillation in that sector. The periods 7-8 and 15-17 August are prime examples of cases
where such a statemenu is completely false: the F9 data showed no evidence of irregulerity

structures in any of the three passes on these days, but both the FLTSAT and ROVER data
sets showed substantial scintiliation levels,

These results point up the main ditficulty in using the DMSP data for scintillation
monitoring in the equatorial region - the satellite must pass through the irregularity struc-
ture in order to see it, This is a seemingly simple observation, but one which is complicated
by the facts that (i) the plume structures which are thought to be the main source of the
equatorial irregularities seen by DMSP are elongated along the magnetic field direction and
have a (relatively) limited longitudinal extent, (2) the DMSP orbit is such that it samples
only a small Jongitude range in any given pass, and (3) the DMSP satellite may pass above
the irregularities causing the scintillation (either a plume which has not reached 840 km or
BSS irvegularities). The second point is particularly true in the Kwajalein sector, where the
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Figure 32. UHF intensity scintillation (S4 index) observed on the HiLat and Polar BEAR beacons by the
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theoretical saturation (S4 = 1.0), and the dotted line the effective noise floor of the observations.
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Figure 33, L-band intensity scintillation (S4 index) obsesved on the HiLat and Polar BEAR beacons by the
ROVER reciever located on Kwajalein Atoll (plotted as in Figure 31).




orbital plane is nearly aligned with the magnetic field direction. Thus, there is a reasonable
probability that the satellite could pass between large plume structures and see nothing but
a smooth ionosphere on nights when intense scintillation is observed.

This problem was addressed in a study of ion density data from the RPA sensor on
the DMSP F2 and F4 satellites by Young et. a/.137] They developed & two-component model
for the probability of observing a plume structure from the DMSP platform. The first
component of this model contained all geometry effects (the size and spacing of the plumes
and the orientation of the DMSP orbit with respect to the geomagnetic field), and the
second component described a density threshold cffect observed in their data set. The
model assumed that the plumes were randomly (as opposed to uniformly) distributed in
longitude and gave the probability of observing a plume structure as

e Fol
Py = 1 - | ———— | H[Ny4(DOY) ,Nyp] [4]
1+ pgpl

where 4, is the longitudinal plume density; 1 is the longitudinal width of the plumes; A is
the number of degrees of geomagnetic longitude covered by the DMSP orbit between two
specified geomagnetic latitudes; and H is a unit step function, which is zero when the maxi-
mum ion density observed in the pass (Ny,) is less than a threshold value (N4 ¢, a function
of the day of year (DOY)) and one when the observed density is above the threshold. If the
plumes are assumed to cover a geomagnetic latitude range of 200 on either side of the dip
equator, their analysis of the DMSP observations provided values of 0.11 plumes/deg for
Koy 3.4° for 1, and values of 5.6x105 jon/cm3 and 1.64x10% ion/cm?3 for N, .. for the spring
and autumn equinoxes, respectively. The longitude coverage for the DMSP orbit for the
present study varies from just over 79 for the west cases to 3° for the center cases to 1° for
the east cases. According to the model, this results in observation probabilities of 66%,
48%, and 35% for the west, center, and east cases, respectively, times the density-threshold
step function, H.

Figure 34, taken from Young et. ali%”] (their Figure 4), illustrates how they deter-
mined the threshold density for the step function. A two-sided ion density distribution func-
tion was generated for each of the six data sets in their study, with cases including irregu-
larity structures plotted to the right of the center line and cases without such structures to
the left. The two cross-hatched lines indicate the density levels at which the mechanism that
creates the irregularity structures (i.e., the plumes) appears to "turn on" in each of the two
seasons observed. Figure 35 shows similar plots for the data from the present study. In
both plots, each x mark represents a single sector-day case (i.e., center pass on 24 August,
west pass on 2 August, etc.). The determination of whether a particular pass is plotted to

the right or left of the vertical line is based on whether an irregularity structure was
observed in the F9 data for that particular sector-day. In Figure 35a, the maximum density
observed in the F9 pass is used to build the distribution; in Figure 35b, the density from the
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F8 pass made in the same sector (east, center, west) as the F9 data used to make the struc-
ture/no structure determination is used. The dotted line is the September equinox thresh-
old from Young et. al.[3" (this line corresponds to the lower threshold limit plotted in Figure
34).

While there is evidence of a threshold effect in Figure 35a, it is at a lower density
than reported by Young et. al.. While it is not clear where the threshold should be placed, it
is at least a factor of two to three lower than that derived in the earlier study. This could be
due to problems with the absolute calibrations of the instruments. Young et. al. state that
their observed densities "exceed some values reported elsewhere," and conclude that they
feel that their densities are accurate "within a factor of 2 or better." In the present study to
date, we have focused more on the relative changes in the density than on the absolute
value of the density, so there are uncertainties in the accuracy of the absolute densities
obtained from the SSIES SM sensor. Potential sources of error in the density
measurements from the SM sensor are (1) the lack of information about the ion drift veloc-
ity in the ram direction due to failure of the RPA sensor, (2) uncertainties in the calibration
constants used to convert the telemetry data into densities, (3) a bias due to the sensor not
being at zero potential with respect to the surrounding plasma, (4) uncertainties due to
plasma flow-dynamics around the satellite, and (5) a non-uniform electrostatic potential
pattern in the vicinity of the SM sensor. Since the expected ion drifts are relatively slow in
the equatorial region (a few hundred meters/sec), uncertainties due to (1) should be less
than 5% or so.

This problem was discussed with R. A. Heelis at UTDU39), who is of the opinion that
(5) is a potential source of error in the total ion density measurements, as the SM instru-
ment appears to be measuring only the O+ ions. In comparisons with density measure-
ments made with the RPA instrument (when it was operational) on the F8 satellite, they
found that the total ion density observed by the SM sensor agreed well with that from the
RPA when only O+ was present. When a measurable amount of H* was, present, the total
ion density measured by the SM sensor was less than the sum of the O+ and H* number
densities and tended to track the O+ density. This type of behavior was also seen during
the early-orbit checkout of the SSIES instruments on F8[40l, A correction for this effect
would increase the densities reported by the SM sensor, which would increase any threshold
level extracted from Figure 35a. It is difficult to quantify the magnitude of the correction,
as it would be a function of the number of H* ions present, which in turn is a function of
time, location, season, and solar epoch. This issue will need to be addressed after the
launch of the next DMSP satellite, when a detailed comparison between the SM and RPA
densities can be made. :

Figure 35b was generated to see if there would be an observable threshold effect in
measurements of the density near local sunset in a particular longitude sector, i.e,, in the F8
density observations. As with the F9 density data, there appears to be a threshold effect. It
would be premature, however, to attempt to set a threshold value from the present data set
for several reasons. First, there are uncertainties in the absolute density measurements;




second, the data set used is not large enough to yield a high level of statistical confidence in
any threshold derived from it; third, the data are from a single longitudinal region (central
Pacific) which may not be representative of other sectors; and fourth, it is not clear where
the threshold should be set. For instance, in Figure 35a should the threshold be set above or
below the single structure observation at a log density of 4.6? This feature, located in the
center pass on 25 August, is odd (see the appendix), and may be due to an instrument
effecti4l], (However, this observation was made on a night with nearly 5 hours of saturated

intensity scintillation (S4=1.0) at Kwajalein!) i

A second way in which an in-situ sensor on a DMSP satellite may not "see" the irreg-
ularities that are causing scintillation is that it may be passing above them, There appear to
be two situations which may arise: (1) a plume that has not reached 840 km, and (2) BSS
irregularities, We hope to be able to address this problem using backscatter data from the
Altair radar for several nights, including cases when there was intense scintillation on all of
the beacon observations (FLTSAT, HiLat, and Polar BEAR) but no irregularity structures
were observed in the F9 data. As mentioned earlier, we hope to obtain the necessary
backscatter date prior to the end of the project to address this issue,

Since the overall objective of this study is to assess the potential for characterizing
scintillation based on the DMSP observations, Figures 36a and b have been generated to
compare the DMSP results to the FLTSAT observations in a form similar to Figure 35. In
Figure 36a, the data plotted in Figure 35a have been divided into separate sectors (east,
center, west), and the number of hours that 4 on the FLTSAT link was above 0.5 on the
night corresponding to a given pass (in tenths of hours) has been plotted instead of an x
mark. The average values listed at the top of each plot in this figure are the average
number of hours that S4 > 0.5 was observed in all structure and non-structure cases. The
two cases in each plot shown by ** are for the first two days in August, during which the
FLTSAT link was not monitored. Figure 36b is similar, but the date of the pass is plotted
instead of an x mark.

Two observations may be made from Figure 36a: first, the threshold effect is much
clearer in the east and west sectors than in the center sector; and second, the average
number of hours with §4 > 0.5 in the structure cases for the center sector is much larger
than that in the non-structure cases, while in the east and west sectors, they are comparable.
It is not clear what the first observation is indicating - with such a small data set it may
merely be reflecting the "luck of the draw." The second observation, however, may be
telling us that, at least in the Pacific sector, passes more than 15° or so from a target
transionospheric radio link are of marginal use in determining whether that link will be
experiencing scintillation,
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the pass ocourred. The dashed line indicates the September threshold from Young et. a/, (1
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§. Conclusions

During the past year we have (1) completed the analysis of both the in-situ (DMSP
SSIES) and propagation (AIO-AFSAT) data for one of the near-coincident passes from the
January 1988 high-latitude data-collection campaign and (2) conducted an analysis of both
in-situ (DMSP SSIES) and propagation (FLTSAT, HiLat, and Polar BEAR) data collected
near Kwajalein Island during the DNA PEAK campaign. As a result of these analyses, we
have reached the following conclusions as to the potential for using the DMSP SSIES data
for characterizing scintillation effects:

1. The data show a good potential for use at auroral latitudes. The excellent agree-
ment between the S, observed on the AIO-AFSAT link and that generated from the SSIES
analysis indicates that the C,L estimates calculated from the SM data are fairly accurate.
The agreement between the observed phase scintillation parameters and those generated
from the SSIES analysis is not as clearly "good" as that between the two estimates of Sy, but
this assessment was difficult to make owing to problems with the AIO-AFSAT phase data
and the lack of observations of the in-situ drift velocity at the AIO-AFSAT IPP,

2. The excellent agreement between the SSIES and AIO-AFSAT S, values was
obtained using a model topside distribution, with only the fon density at the satellite altitude
as an input, to calculate C,L from C,.

3. It is not clear exactly how the SSIES data should be used to characterize scintilla-
tion in the equatorial region, but it is likely to be more as an indirect indicator of the
presence (and possibly the severity) of irregularity plume structures rather than as a direct
measure of C,L, as at auroral latitudes. The results of our equatorial study were in general
agreement with a study made with RPA data from the DMSP F2 and F4 satellites!®] which
found that (1) an in-situ sensor on a satellite in the current DMSP orbit plane will not
necessarily pass through plume structures present in the equatorial topside, and (2) there
may be a threshold density which can be used to infer the existence of plumes even though
they have not been encountered.

It must be emphasized that the primary purpose of this project was to assess the
potential for using data from the SSIES sensors to characterize scintillation effects. The
results to date indicate that the potential is there, and a larger scale effort should be under-
taken to (1) refine and validate the methods developed during this ptoject to calculate C,L
from the SM data at high latitudes, (2) develop methods for locating the high-latitude scin-
tillation boundary using data from both SSIES and SS8J /4, and (3) develop detailed methods
for using the SSIES data to characterize the irregularity environment at equatorial latitudes.
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Appendix. Plots of SSIES PEAK Campaign Data

This appendix contains time-series plots of all DMSP F8 and F9 SSIES Scintillation
Meter data used in the PEAK campaign analysis described in Section 4. The data from
both satellites for each date are plotted on a single page. The three plots on the left side of
each page are from DMSP satellite F8, and the three plots on the right side are from F9,
The three selected passes from each satellite were centered on Kwajalein's latitude (1670
E), with the center plot being the pass nearest to Kwajalein, the top plot the pass just prior
to the center plot (east of Kwajalein), and the bottom plot the pass just after the center plot
(west of Kwajalein),

The abscissa and ordinate scales are the same on all plots. Time (and satellite
location) is plotted along the x-axis, with four minutes between the vertical dotted lines.
The start time of the plots was selected to begin the plot near apex latitude +40°, Total fon
density is plotted along the y-axis, ranging from 0.0 to 2.0x105 ion/cm3, The data are
allowed to "wrap-around" along the y-axis, so that, for example, the data point for an jon
density of 3.0x105 jon/em?3 s plotted as 1.0x10% ion/cm3,

As mentioned in Section 4, these data were processed with no manual intervention
to correct for instrument anomalies such as missing data frames or effects of RPA
calibration sweeps, Most of the large date gaps are due to the SM instrument "freezing" on
an EL-AMP status-flag setting, as described in Section 4.
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